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Summa~ 

The forces exerted by non-breaking, normally-incident water waves on a sloping sea wall are investigated within 
the framework of linearised potential theory. The slope of the sea wall is assumed to be large. The solution is in 
the form of an eigenfunction expansion, the coefficients of which are found by two methods. The first is a 
perturbation scheme based on the smallness of the reciprocal of the slope and is carried out to second order in 
this quantity. The second is a Galerkin technique. Results are presented for the case of a planar, outward-sloping 
sea wall. In shallow water it is found that the normal wave force decreases as the slope of the wall increases. In 
deep water, the reverse is true whilst in water of intermediate depth the normal wave force is only weakly 
dependent upon the slope of the sea wall. 

1. Introduction 

The theoretical s tudy of water-wave problems began well over a century  ago and  it is 
indeed remarkable  that there are still m a n y  unsolved problems,  even within the framework 
of l inearised potent ia l  theory. In  recent years, much  a t ten t ion  has been paid to the effects 
of changes in bo t tom topography.  The interested reader is referred to Tuck [8] for a 
discussion of some of the classical problems which involve variat ions in depth. The great 
power of modern  computers  has mean t  that m a n y  new problems have been at tacked and  
m a n y  new techniques brought  in to  use. Good  recent examples are provided by  the work of 
K i rby  and  Dal rymple  [3] who studied propaga t ion  across a trench and  the use of the 
"parabo l ic  approx imat ion"  by Radder  [6] and  others. 

The problem to be addressed in  this paper  is that of the reflection of a normal ly- inci-  
den t  monochromat ic  wave train by  a sloping sea wall. Of par t icular  interest to engineers is 
the wave force exerted on  the wall. The corresponding p rob lem for an axisymmetric  body  
has been treated by F e n t o n  [2] who used a Green- func t ion  technique. Exper imental  
measurements  of the wave forces on walls have been carried out in the laboratory by 
R u n d g r e n  [7] who studied only vertical walls. We will confine ourselves to the case of 
waves for which the slope of the sea surface is always small and  will use l inearised 
potent ia l  theory. There are several techniques that could be used ~o attack this problem. 
For  example, one could use a Green- func t ion  method or a source-dis t r ibut ion method.  
These are both  wel l -known in the case of depth variat ions (see, for example, Macaskil l  [5]) 
and  lead to integral equat ions  which then have to be solved numerically.  
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Here, we will assume that the slope of the sea wall is large. This is likely to be true in 
many practical cases and means that we can set up a perturbation scheme in which the 
small parameter is a measure of the reciprocal of the slope of the sea wall. This leads to an 
eigenfunction expansion for the velocity potential. We calculate the coefficients in this 
expansion, and hence the force on the wall, correct to second order in the small parameter. 
An alternative approach is also used, namely to numerically determine the coefficients in 
the eigenfunction expansion by means of a Galerkin technique. In principle, this is not 
restricted to walls of great slope. However, it is found not to be numerically reliable if the 
slope is too "small" in a sense which will become more apparent later. Numerical results 
are presented and discussed for the case of a planar outward-sloping sea wall. It is found 
that the perturbation and Galerkin methods give results which merge as the wall slope 
increases and that the behaviour of the force as a function of slope is quite different in 
deep water as compared with shallow water. Both the perturbation and Galerkin methods 
can be readily extended to the case of obliquely-incident waves. 

2. Formulation 

We consider water waves in the region bounded by a flat bottom at y = - d ,  a free 
surface at y = 0 and a sea wall of profile x = f ( y ) ,  where f (0) - -  0, for - d  < y  < 0. The 
geometry is shown in Figure 1. A wave of amplitude a/2 is assumed to be normally 
incident from x = + oo. Since there is no mechanism for wave breaking or energy 
dissipation in the model, this wave will be totally reflected from the wall with amplitude 
a/2 and some phase change which will clearly depend upon the shape of the wall as well 
as the frequency of the incoming wave and the offshore depth. 

Thus for x ~ + oo, we expect that the solution will behave like 

n - a cos(kx + fl) sin tot, (1) 

q~_ g_a cosh k(y  + d)cos(kx + fl) cos tot, 
to cosh kd (2) 

where ~ is the velocity potential, ~ the free-surface elevation, to the frequency and k the 
wavenumber which satisfies the dispersion relation 

to2= oo k tanh kd. 

= ART I 

3]'. Y X 
y-O 

/ , /  / ~ / / / /  / i /  i , ' r , "  y=-d 
Figure 1. The sea wall and the coordinate system used. 
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If the wall is vertical, f ( y ) =  0 and (1), (2) form an exact solution of the linearised 
problem with fl = 0. 

We now define dimensionless variables, temporarily denoted by asterisks, as follows: 

(x ,  y,  *!, f )  = d(x*,  y*, 71", f*) ,  o~ = (g/d)'/2o~ *, t = ( d / g ) l / 2 t  *, 

~p = ( ga/a~)ep*, ? = pgap*, k = k * / d ,  F =  pgadr* 

where 0 is the water density, p the pressure and F the wave force per unit span on the 
wall. When the asterisks are dropped, the problem becomes, in dimensionless variables, 

and 

02~ 
22-----=-+ = 0  for - l < y < O a n d f ( y ) < x < o o ,  (3) 
Ox 2 ~y2 

Ot~ 
Y0~-?=0 at y = - I  f o r x > / ( - 1 ) ,  (4) 

0~ 
~ _  =~02~ at y = 0  f o r x > 0 ,  (5) 
yo 

0~ 8~ 
f'(y)--ff-5- = 0 o n x = f ( y )  for - 1  < y < 0 ,  (6) 

3x oy 

- sech k cosh k(1 + y )  cos(kx + fl) as x ~ oo, (7) 

where ,#(x, y, t)  = ~ ( x ,  y )  cos o~t. The wave pressure is found from the linearised form 
of Bernoulli's equation as 

p = • sin 0~t 

and the total wave force per unit span on the wall by 

F = F x i  + = - f p n d s  

where n is the unit outward normal to the wall, s is arc-length along the wall and the 
integration proceeds along the wall from ( f ( - 1 ) ,  - 1 )  to (0, 0). It is readily shown that 

n d s = ( i - f ' ( y ) j ) d y  

and so 

F = - sin t o t L ° l ( i - j f ' ( y ) ) ~ ( f ( y ) ,  y ) d y .  (8) 

It  is clear that we are not going to be able to solve analytically the problem for • for 
arbitrary wall profiles f ( y )  and hence some sort of approximate method will be required. 
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F o r  the moment ,  we note  that  a sha l low-water - theory  solut ion is ava i lab le  when ~2 < 1 for 
the case of a p l ana r  ou tward- s lop ing  wall  x = - a y .  The  a p p r o p r i a t e  solut ion is given on 
page  276 of  L a m b  [4] as 

*/= BJ0 (2to ( a x ) l / 2 )  sin wt 

where  B is a constant .  Match ing  this to a sha l low-water  s tanding  wave at  x = a by  
requi r ing  the con t inu i ty  of  *1 and  d*l/dx is read i ly  shown to give the total  no rma l  force 
pe r  uni t  span  on the wall  as 

F =  - ( 1 + 0 : 2 ) 1 / 2  J l (2~oa)  sin tot n 
(9) 

o~a ( Jg  (2~oa) +S12(2o~a)) '/2" 

This will be used la ter  for compar i son  with our  app rox ima te  solut ions  when the water  is 
indeed  shallow. F o r  the m o m e n t  we note  that  when a << 1, (9) becomes  

F =  - (1 + ½a 2 + O ( a 4 ) ) n  sin 0~t. (10) 

3. The perturbation solution 

W h e n  the sea wall  is a lmost  vertical,  a na tura l  a p p r o a c h  is to seek a pe r tu rba t ion  solut ion 
in which the small  p a r a m e t e r  is a measure  of  the rec iprocal  of  the slope of  the wall. Thus  
we take the equa t ion  of  the wall  to be 

x=f(y)=ag(y) 

where  lal <<1 and  g is an O(1) funct ion  with  g ( 0 ) = 0 .  If  g(y)>~O for  - 1  < y < 0 ,  
posi t ive  values of  a co r respond  to ou tward- s lop ing  walls  and  negat ive  values of  a to 
backward - s lop ing  walls l ike overhanging  cliffs. Since I~1 is a ssumed  to be small ,  the 
b o u n d a r y  cond i t ion  on the wall  will be  t ransfer red  to x = 0 by  means  of  a Taylor-ser ies  
expans ion  in x. This  means  that  we now have to solve Lap lace ' s  equa t ion  for  x > 0, 
0 > y > - 1, subject  to (4) at  y = - 1 for  x > 0, (5) at  y = 0 for x > 0 and  a compl ica ted  
b o u n d a r y  cond i t ion  (given in (12) below) at x = 0 for 0 > y > - 1 and  the cond i t ion  (7) as 
X ----~ OQ. 

Separa t ion  of  var iables  using the b o u n d a r y  condi t ions  at  y = 0 and  y = - 1 leads  to a 
so lu t ion  of  the form 

t~=sechk(coshk(l+y) cos(kx+fl)+ ~A. cosK.(l+y) exp(-K.x)), (11) 
n = l  

where  k is the sur face-mode  wavenumber  and  satisfies 

¢,0 2 = k tanh k 
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and K n is the "wavenumber"  of the n-th evanescent mode and hence satisfies 

tO 2 ~  - - K  n tan K n. 

In (11) the sech k term is taken as a common factor for algebraic and numerical 
convenience. Essentially, it ensures that the A, do not become large in deep water 
(~o 2 >> 1). The solution (11) satisfies all the conditions of the problem except that of no 
normal flow at the wall itself. In the next section we will present a numerical technique for 
choosing the unknowns fl and A, to approximately satisfy (6). For the present, we note 
that if 0/= O, (11) satisfies the boundary condition at the wall with fl = 0 and A n = O. 
Hence, for small 0/we postulate expansions of the form 

fl= ~-'. fl, nOt'' and A.= ~ A..,0/". 
m = l  m = l  

If we define 

0,,, = ~ A.. ,  cos x.(1 + y )  exp(-x.x) 
n = l  

and transfer the boundary condition (6) at x = 0/g(y) to x = 0 by means of a Taylor-series 
expansion in x, we find that this boundary condition becomes 

( } 0/ - f l l k  cosh k(1 + y )  +-3-ff-x - g'(y)k sinh k(1 + y )  -g (y )k  2 cosh k(1 + y )  

+0/2[ fl2k cosh k(1 + y )  + 3¢2 , 0¢~ ~2~5~ ~ - 3x - g  (Y)--~-y+ g(Y)--~-x21 + 0 ( 0 / 3 )  

= 0  a t x = 0  for - l < y < 0 .  (12) 

We now use the fact that the set 

{cosh k(1 + y ) ;  cos x.(1 + y ) ,  n = 1, 2, 3 . . .  }, (13) 

is a complete orthogonal set of eigenfunctions on ( - 1, 0). Hence we multiply (12) by each 
of these eigenfunctions, integrate from - 1  to 0 and equate to zero the coefficient of each 
power of 0/ which results. After some integrations by parts and use of the condition 
g(0) = 0, we find 

4k2L°g(y) sinh 2 k(1 + y ) d y  

fll -- 2k + sinh 2k 

and 

-4kr,J°lg(y ) sinh k(1 + y )  sin r . ( 1  + y ) d y  

A"I = 2K. + sin 2 r .  
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from the O(a) terms. Similarly, the O(a 2) terms give 

&_ 
f0 - 4  AjlK j g (y )  sin r , (1  + y )  cosh k(1 + y ) d y  

j ~ l  1 

2 k + sinh 2 k 

and 

An2  - 

4 hjll¢ j g (y )  sin x,(1 + y )  sin xj(1 + y ) d y  
j = l  1 

2x~ + sin 2~: n 

Correct to O(a 2) the velocity potential on the wall is given by Taylor expansion about 
x = 0  as 

= sech k {cosh k (1 + y) + a n~l ~ A n  l COS I¢ n (1 -1- y )  

When this is inserted into (8) we obtain the x-component of the wave force per unit span 
on the wall correct to O(a  2) and the y-component correct to O(ot3). Naturally, in 
calculating the normal force to O(a  2) we only include the O(a  2) part of the y-component. 
For future reference, we note that, for a vertical plane wall, a = 0 and 

F = - k - 1  tanh k i sin wt. 

4. A Galerkin solution 

As remarked in Section 3, the expression (11) satisfies all the conditions of the problem 
except the boundary condition on the wall itself. If we rewrite it as 

dO = (1 + B2)- l /2sech k ( ( cos  kx + B o sin kx) cosh k(1 + y )  

+ ~ Bn cos x,(1 + y )  exp ( -Knx)} ,  (14) 
n = l  

and substitute into the boundary condition (6) at the wall, we 
expression which we will write as 

BoHo(y)+ ~ BnH~(y)-H(y)=O 
n ~ l  

get a complicated 

for - 1  < y  < 0, (15) 
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after cancelling off the (1 + B02) - ~/2 factor. Many methods, such as collocation, could be 
used to solve (15) for the Bj coefficients. Here we use a Galerkin method based upon the 
complete set of eigenfunctions (13). Thus, we multiply (15) by cosh k(1 + y)  and integrate 
from - 1  to 0 to give an expression which we will write as 

C o , , B , ,  = D O . (16) 
n = 0  

Similarly, from the cos ~,,(1 + y)  eigenfunctions, we obtain 

C,,,,,B,, = D,, for m = 1, 2, 3 . . . .  (17) 
n = 0  

Truncating (16) and (17) at n = N gives a set of N + 1 linear algebraic equations for the 
N + 1 unknowns B 0, B 1 . . . .  B N. For an arbitrary wall profile f ( y )  the various integrals 
occurring in these expressions would have to be evaluated numerically. Once the Bj 
coefficients are known, we find the velocity potential f rom (14) and the force per unit span 
on the wall from (8). Again, numerical integration would be necessary for arbitrary f ( y ) .  

It will be observed that this Galerkin method, although motivated by the "large-slope" 
solution of Section 3, makes no assumption that the slope of the wall is in fact large. 
However, the form of the solution is one which is appropriate to regions bounded by a flat 
bo t tom at y = - 1  and we might expect that some problems with the method would 
become apparent if the slope of the wall was not large. 

5. Results and discussion 

In the two previous sections we have presented a perturbation technique and a Galerkin 
technique for the approximate solution of our problem. In one sense, the Galerkin method 
supersedes the perturbation calculation. Nevertheless, it is of interest to present the results 
of both in a specific case. In this section, we present results for the simple but important  
case of a planar outward sloping wall x = - a y .  All the integrals involved can then be 
evaluated analytically. As a check, the integrals were evaluated numerically using Rom- 
berg integration for a few randomly-chosen values of the parameters co and a. In both the 
perturbation and Galerkin methods, the number  of terms used in the series expansions 
(11) and (14) was increased until the forces had converged to at least three decimal places. 
For  the perturbation method, this typically required about 20-40 terms while for the 
Galerkin method it typically required 5-10 terms. As a general rule, increasing ~o or a 
increased the number  of terms needed for convergence. 

We begin by discussing the situation in shallow water. Figure 2 shows the magnitude 
F T of the total normal force on the wall (the sin oJt factor being omitted) for 0~ = 0.1 and 
for values of a ranging from 0 to 1.0. In this figure, we have shown the results of the first- 
and second-order perturbation methods, the Galerkin method and the shallow-water-the- 
ory solution. Numerical problems developed with the Galerkin method for values of t~ 
beyond unity. Using a small number  of terms in the series did not give sufficiently 
accurate results. However as the number  of terms was increased, the resulting system (16), 
(17) of linear equations became more and more ill-conditioned and hence the results less 
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F i g u r e  2. The  n o n - d i m e n s i o n a l  to ta l  n o r m a l  wave  force  F v for  a p l a n a r  o u t w a r d - s l o p i n g  sea wal l  x = - a y  for  

0 ~< a ~< 1.0 in the case  o~ = 0.1 a c c o r d i n g  to  first  ( . . . . . .  ) a n d  s e c o n d  ( - -  - -  - - )  o r d e r  p e r t u r b a t i o n  theories ,  the 

G a l e r k i n  so lu t ion  ( ) a n d  sha l l ow-wa te r  t heo ry  ( . . . . .  ). T h e  las t  two are  v i r tua l ly  ind i s t ingu i shab le .  

and less reliable. Our VAX 11/750 uses 14 decimal places and we found that a = 1.0 was 
about as far as we could go for 3 figure accuracy in F v. As can be seen from Figure 2, the 
first-order perturbation solution gives a normal force which is virtually independent of the 
slope of the wall. This is consistent with (10). The second-order-perturbation, Galerkin 
and shallow-water-theory results all agree quite well up to about a = 0.5. Between this 
value and a = 1.0, the Galerkin and shallow-water results still agree quite closely but the 
second-order-perturbation results are beginning to over-estimate the force. Perhaps the 
most interesting aspect of Figure 2 is the agreement between the results of shallow-water 
theory and the (presumably numerically accurate) Galerkin method for very steeply 
sloping walls. This is at first sight surprising since vertical accelerations would be expected 
to be large in the neighbourhood of the wall, thus invalidating shallow-water theory. 
However, we note that shallow-water theory also gives correct predictions of certain gross 
features of the flow in other situations involving long waves where one would not expect 
vertical accelerations to be small. For example, it correctly predicts the reflection coeffi- 
cient from a step discontinuity in the depth, as discussed by Bartholomeusz [1] and Tuck 
[8]. 

Turning now to the case of water of intermediate depth, we show in Figure 3 the results 
of the first- and second-order perturbation calculations, plus the Galerkin results, for 
oa = 1.25 and for values of a ranging from 0 to 0.75, the latter being the largest value of a 
for which the Galerkin method gave reliable results. In this figure, the total normal force 
per unit span has been divided by its value tanh k/k for a vertical wall. This manner of 
presentation enables us to read off the fractional change in the force as the wall becomes 
less and less vertical. As can be seen, the force is only fairly weakly dependent upon the 
slope of the wall in this case and the three approximations merge as a ~ 0. 

The corresponding results for deep water, ~ = 2.5, are shown in Figure 4 for values of 
a from 0 to 0.5, the latter being the largest value of a for which the Galerkin results were 
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Figure  3. As  for F igure  2 in the case ¢ = 1.25 for 0 < a ~< 0.75. The sha l low-water - theory  so lu t ion  is not  shown 

and  F, r has  been d iv ided  by the value tanh k / k  ( = 0.55631) which it  takes  for a vert ical  wall  a = 0. 

reliable at this frequency. In contrast with shallow water, the total normal force now 
decreases as the slope 1/a decreases and the three approximations again merge as a ~ 0. 
It should be noted that ~ = 2.5 corresponds to really quite deep water with the deep-water 
dispersion relation a~ 2 = k being satisfied to better than 1 part in 105. 

From now on, we will present only the results of the Galerkin method. In Figure 5 we 
have plotted the total normal force per unit span for various values of w for 0 < a < 0.5. 
Some of this information is presented in a different way in Figure 6 where we show the 

1 . 5  

1 . 0  

0 . 5  

Oo 0 O. 2 5  C~ O. 5O 

Figure  4. As  for F igure  3 in the case a~ = 2.5 for 0 < a ~< 0,5. Here,  t anb  k / k  = 0.16000. 
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F i g u r e  5. T h e  to t a l  n o r m a l  w a v e  fo rce  F T as  a f u n c t i o n  o f  a for  s eve r a l  d i f f e r e n t  v a l u e s  o f  to. 

to ta l  no rma l  force pe r  uni t  span as a funct ion of  o~ for three di f ferent  values of  a ;  namely  
a = 0.0, 0.25 and  0.5. F r o m  these figures, it  is clear  that  in shal low water,  the force 
increases  as a increases  while in deep water  the reverse is true. In  water  of  in te rmedia te  
d e p t h  the force does  no t  vary much  as a funct ion of  a.  Indeed,  a l i t t le numer ica l  
expe r imen ta t ion  indica tes  that,  at  abou t  ~0 = 1.14, the force is v i r tual ly  i ndependen t  of  a. 
Pe rhaps  the most  s t r iking fea ture  of these results  is the d rama t i c  decrease  in the wave 
force in deep water  as the wall  becomes  less steep. F o r  example ,  when a = 0.5, which 
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1 . 0  

0 . 5  

0 . 0  

I I I I 
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0.  5 0  1. O0 1. 50  2.  O0 2.  50  

W 

F i g u r e  6. T h e  to t a l  n o r m a l  w a v e  fo r ce  FT  as  a f u n c t i o n  o f  to fo r  t h r e e  d i f f e r e n t  v a l u e s  o f  a ;  n a m e l y  ~t = 0.0 

( ), a = 0.25 ( . . . . . .  ) a n d  a = 0.5 ( . . . . .  ). 
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Figure  7. The ra t io  R = F s / F  T for 0 < a ~< 0.5 for var ious  values  of to. Here  F s is tha t  pa r t  of  the to ta l  no rma l  

wave  force F T due  to the surface-wave m o d e  only. 

corresponds to a wall inclined at about 63 ° to the horizontal, the total normal wave force 
when to = 2.5 is reduced to about 35% of its value for a vertical wall. 

Another point of interest is the way in which the force is influenced by the evanescent 
modes. To assess this, we took our converged Galerkin solution and calculated from it the 
total normal wave force per unit span due to the surface-wave mode only. This was then 
divided by the total normal wave force per unit span calculated earlier. The results are 
shown in Figure 7. Values greater than unity indicate that the evanescent modes act to 
reduce the force, i.e. the part of the force due to the evanescent modes has the sign 
opposite to that due to the surface wave. In shallow water, the ratio is seen to be extremely 
close to unity indicating that the contribution from the evanescent modes is negligible. In 
fact, it is clear from Figure 7 that the evanescent modes have little effect until the water 
gets quite deep. Even at to = 1.5 and a = 0.5 the ratio is only 1.08. For larger values of to, 
the evanescent modes becomes more and more important. This means that some of the 
simple-minded arguments that one sometimes hears which involve only a consideration of 
the surface-wave component of the motion are going to be quite misleading in deep water. 

In summary, we believe that our Galerkin method gives reliable results for steeply-slop- 
ing sea walls and indicates the qualitative difference in the behaviour of the wave force as 
a function of the wall slope between deep and shallow water. Both our perturbation and 
Galerkin methods are readily extended to the case of oblique incidence with only a small 
increase in algebraic complexity and we believe that the results of the Galerkin method 
would provide a useful check on the results of other methods which could be applied to 
this problem. 
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